TD 2 : Séries numériques

EXERCICE 1 Mise en route

Quelle est la nature des séries suivantes?

1.
$$\sum e^{-n} n^{100}$$
, $\sum e^{-\sqrt{n}} n^{100}$ et $\sum e^{-\ln n} n^{100}$

$$2. \sum \frac{n^n}{(\ln n)^n n!}$$

3.
$$\sum \sqrt[3]{n^3 + \alpha n} - \sqrt[2]{n^2 + 5}$$
 pour $\alpha \in \mathbb{R}$

4.
$$\sum \arccos \frac{n^{\alpha}}{1+n^{\alpha}} \text{ pour } \alpha \in \mathbb{R}$$
.

5.
$$\sum \cos \pi \sqrt{n^2 + n}$$

EXERCICE 2

Calculer la somme des séries suivantes :

(a)
$$\sum_{n=0}^{+\infty} \frac{\cos n\theta}{2^n}$$
; (b) $\sum_{n=0}^{+\infty} \frac{n^2 + n + 1}{n!}$; (c) $\sum_{n=1}^{+\infty} \frac{n + 6}{n^3 + 5n^2 + 6n}$; (d) $\sum_{n=0}^{+\infty} \frac{n + 1}{3^n}$

EXERCICE 3

Pour $\alpha > 0$, montrer que la suite de terme général $u_n = \prod_{k=1}^n \left(1 + \sin\frac{(-1)^n}{k^{\alpha}}\right)$ converge.

EXERCICE 4

Soient $A, B \in \mathbb{C}[X] \setminus \{0\}$. On s'intéresse aux séries $\sum \frac{A(n)}{B(n)}$ et $\sum (-1)^n \frac{A(n)}{B(n)}$.

- 1. Justifier que ces séries sont bien définies à partir d'un certain rang.
- 2. Discuter, en fonction de $p = \deg A$ et $q = \deg B$, la nature de ces séries.

EXERCICE 5 Produit de Cauchy de séries convergentes

Pour $n \in \mathbb{N}^*$ on pose $u_n = v_n = \frac{(-1)^n}{\sqrt{n}}$.

- 1. Montrer que $\sum u_n$ et $\sum v_n$ convergent.
- 2. Quelle est la nature de la série produit de Cauchy de u_n et v_n ? Conclusion?

EXERCICE 6 Transformation d'Abel

Soit $\alpha \geq 1$ et $\theta \in \mathbb{R}$, on s'intéresse à la série $\sum_{n \geq 1} \frac{\sin n\theta}{n^{\alpha}}$.

- 1. Quelle est la nature de la série pour $\alpha > 1$?
- 2. On s'intéresse maintenant au cas $\alpha = 1$. Quelle est la nature de la série si $\theta \in \pi \mathbb{Z}$?
- 3. On suppose désormais que $\theta \notin \pi \mathbb{Z}$. On pose $A_n = \sum_{k=0}^n \sin k\theta$. Donner une majoration de A_n indépendante de n.
- 4. En remarquant que $\sin n\theta = A_n A_{n-1}$, montrer que $\sum_{n \geq 1} \frac{\sin n\theta}{n}$ converge.
- 5. Montrer qu'il n'y a pas cependant pas convergence absolue. On pourra étudier la série $\sum_{n\geq 1} \frac{\sin^2 n\theta}{n}$.

PROBLÈME 1 E3A PSI 2009

Dans ce problème, on établit un résultat général appelé la *règle de Raabe-Duhamel*. Soit $(u_n)_{n\geq n_0}$ une suite de réels strictement positifs telle qu'il existe un réel λ vérifiant :

$$\forall n \geq n_0, \ \frac{u_{n+1}}{u_n} = 1 - \frac{\lambda}{n} + o\left(\frac{1}{n}\right)$$

- 1. Prouver que si $\lambda < 0$, alors la série $\sum u_n$ diverge.
- 2. Soit β un réel quelconque et $v_n = \frac{1}{n^{\beta}}$. Montrer que $\frac{u_{n+1}}{u_n} \frac{v_{n+1}}{v_n} = \frac{\mu}{n} + o\left(\frac{1}{n}\right)$ où μ est un réel, indépendant de n, à déterminer.
- 3. On suppose que $\lambda > 1$. On se propose de démontrer que la série $\sum u_n$ converge. On choisit β tel que $\lambda > \beta > 1$.
 - (a) Justifier l'existence d'un entier naturel N tel que, pour $n \ge N$, on ait $\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$.
 - (b) Déterminer un réel positif K, indépendant de n, tel que pour $n \ge N$, on ait $u_n \le Kv_n$.
 - (c) Prouver que la série $\sum u_n$ converge.
- 4. On suppose que $0 \le \lambda < 1$. Démontrer par un raisonnement analogue à celui fait à la question précédente que la série $\sum u_n$ diverge (on choisira β de manière à ce que la série $\sum v_n$ diverge et que ceci implique la divergence de la série $\sum u_n$).
- 5. Pour $n \ge 2$, on pose $x_n = \frac{1}{n}$ et $y_n = \frac{1}{n \ln(n)^2}$. Déterminer la nature des séries $\sum x_n$ et $\sum y_n$ et en déduire que le cas $\lambda = 1$ est un cas douteux de la règle de Raabe-Duhamel.
- 6. Pour $n \ge 2$, on pose $w_n = \sqrt{(n-1)!} \prod_{k=1}^{n-1} \sin\left(\frac{1}{\sqrt{k}}\right)$. Déterminer la nature de la série $\sum w_n$.
- 7. Quelle est la nature de la série de terme général $z_n = \frac{3\times5\times\cdots\times(2n-1)}{2\times4\times\cdots\times(2n)} = \frac{(2n)!}{(n!)^22^{2n}} = \frac{\binom{2n}{n}}{2^{2n}}$?

La règle de Raabe-Duhamel s'énonce donc de la manière suivante. Soit $(u_n)_{n\geq n_0}$ une suite réelle à valeurs strictement positives telle que $\frac{u_{n+1}}{u_n}=1-\frac{\lambda}{n}+o(\frac{1}{n})$ pour $n\geq n_0$, alors : si $\lambda<1$ la série $\sum u_n$ diverge ; si $\lambda>1$ la série $\sum u_n$ converge ; si $\lambda=1$ on ne peut rien conclure. Pour ce dernier cas, on peut assez facilement montrer que si $\frac{u_{n+1}}{u_n}=1-\frac{1}{n}+O(\frac{1}{n^\beta})$ pour $\beta>1$ alors la série $\sum u_n$ diverge. La règle de Raabe-Duhamel vient donc préciser le cas douteux de la règle de d'Alembert $\frac{u_{n+1}}{u_n}\to 1$.

EXERCICE 7 Bonus pour les rapides

Quelle est la nature de la série $\sum \frac{1}{a_n!}$ où a_n est le nombre de chiffres de n dans son écriture décimale?